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a b s t r a c t

Solutions of three-dimensional boundary-value problems of the theory of elasticity are given for a wedge,
on one face of which a concentrated shearing force is applied, parallel to its edge, while the other face
is stress-free or is in a state of rigid or sliding clamping. The solutions are obtained using the method
of integral transformations and the technique of reducing the boundary-value problem of the theory of
elasticity to a Hilbert problem, as generalized by Vekua (functional equations with a shift of the argument
when there are integral terms). Using these and previously obtained equations, quasi-static contact prob-
lems of the motion of a punch with friction at an arbitrary angle to the edge of the wedge are considered.
In a similar way the contact area can move to the edge of a tooth in Novikov toothed gears. The method of
non-linear boundary integral equations is used to investigate contact problems with an unknown contact
area.

© 2008 Elsevier Ltd. All rights reserved.

The problem of the action on the boundary of a half-space of an arbitrarily directed concentrated force splits into two problems: the
Boussinesq problem and the Cerruti problem.1 Using the corresponding solutions, the motion of a punch with friction on the boundary of
a half-space was investgated.2,3 The similar three-dimensional problem for a wedge can be divided into three problems: the problem of a
normal force, the problem of the perpendicular to the edge of the wedge shearing force and the problem of the shearing force parallel to
the edge of the wedge. Solutions of the first two problems have already been obtained for a wedge, which enable the motion of a punch
with friction perpendicular to the edge of the wedge to be investigated.4–6 The third problem has only been solved for the case of sliding
clamping of the other edge of the wedge.7 The solution of the third problem, given below for the case of one stress-free face, is identical
with the Cerruti solution,1 when the wedge turns in a half-space.

1. The forces parallel to the edge of the wedge

We will consider, in cylindrical coordinates, a wedge {r ∈ [0, ∞]; � ∈ [−�, �]; z ∈ [−∞, ∞]} with elastic characteristics G (the shear
modulus) and � (Poisson’s ratio); the z axis is directed along the edge of the wedge. Suppose the face of the wedge � = −� is stress-free, and
a concentrated shearing force T acts parallel to the edge on the face � = � at the point r = x, z = y. The boundary conditions of the problem
have the form (�(x) is the Dirac delta function)

(1.1)

It is assumed that as � = (r2 + z2)1/2 → ∞ the displacements descrease not more slowly than �−1, while the stresses decrease not more
slowly than �−2. Moreover, the behaviour of the stresses �r, �� and �r� on the edge of the wedge (the order of approach to zero or infinity)
should be the same as in the plane problem.8

Using three arbitrary Neuber–Papkovich harmonic functions �n = �n(r, �, z) (n = 0,1,2), we will express the displacements in terms of
them (Ref. 4, formulae (1.2)). The formulae for the stresses are obtained using Hooke’s law.9–11
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To solve problem (1.1) we will use the Fourier method and Kontorovich–Lebedev complex integral transformations, which lead to
functional equations with a shift in the argument. These equations can be reduced to Fredholm integral equations of the second kind.
Changing to real integral transformations, we can write the solution in the form (Ki�(	x) is the Bessel function)

(1.2)

where

(1.3)

The prime denotes a derivative with respect to x; the upper sign (plus/minus) in the relations containing the subscript m, corresponds
to m = 1, and the lower sign corresponds to m = 2. The functions �∗

m(�) (m = 1, 2) satisfy Fredholm integral equations of the second kind
(0 ≤ � < ∞)

(1.4)

where

(1.5)

When one face of the wedge is rigidly clamped, it is more convenient to consider the region � ∈ [0, �]. The solution of the problem with
boundary conditions (1.1) when � = � and

(1.6)
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is obtained similarly. The Neuber–Papkovich functions have the form (1.2) where

(1.7)

The function �∗
3(�) satisfies Fredholm integral equation of the second kind (1.4) for m = 3 (the minus sign under the integral is taken)

with a kernel defined by the first formula of (1.5) with m = 3, in which

(1.8)

For sliding clamping of one face of the wedge, we will also consider the region � ∈ [0, �]. The solution of the problem with boundary
conditions (1.1) with � = � and

(1.9)

is given by formulae (1.2), where

(1.10)

while the functions A0(�, 	), A2(�, 	) and B1(�,	) are defined by the corresponding formulae (1.3), the right-hand sides of which must
be multiplied by 2.7 By virtue of symmetry, this will also be the solution of the boundary-value problem for the region � ∈ [−�, �] with
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boundary conditions

(1.11)

For all the problems considered, the solutions of the Fredholm integral equations of the second kind (1.4) (m = 1, 2, 3) in the Banach space
CM(0, ∞) of continuous functions bounded on the semiaxis can be represented by Neumann functional series in powers of (1-2�), which
uniformly converge for sufficiently small values of (1-2�). We can use the method of mechanical quadratures to solve Eqs (1.4) numerically.
Integral equations (1.4) degenerate into equalities for a half-space, and also when the material of the wedge is incompressible (� = 0.5).

We verified the existence of the passage to the limit � → 0.5 in solutions (1.2) - (1.5) and (1.7), (1.8): terms containing (1-2�) in the
denominator vanish.

We also verified that when � = 
/2, solution (1.2) - (1.5) reduces to the solution of the Cerruti problem for a half-space. For example,
taking the quadratures,12,13 we obtain the well-known result (Ref. 1, the third formula of (9.19) with z = 0)

(1.12)

(in view of the fact that the direction of the z axis is opposite to the one taken previously, the sign of the right-hand side of equality (1.12)
was changed).

We will consider, as an example, the tangential displacement uz on the edge of a wedge (r = 0) with one stress-free face when � = 0.5
and y = 0. Taking the equality Ki�(0) = �(�) into account and evaluating the integral (Ref. 13, formula 2.16.14.4) we obtain

(1.13)

When � = 
/2 expression (1.13) is identical with the known expression (Ref. 1, the first formula of (9.19) with � = 0.5). For any wedge
angle the displacement (1.13) reaches a maximum when z =

√
2 x/2.

2. The motion of a punch with friction

We will consider the quasi-static contact problem, when a rigid punch begins to move (without sag) over the face � = � of a three-
dimensional elastic wedge in an arbitrary direction, making an angle 	0 (0 ≤ 	0 ≤ 
/2) with the positive direction of the z axis (with the
edge of the wedge). The Coulomb friction forces are in the opposite direction to the direction of motion. The face of the wedge � = -� is
stress-free (Problem A), or the face of the wedge � = 0 is under conditions of rigid or sliding clamping (Problems B and C respectively). The
shape of the base of the punch base is described by the function

(2.1)

A normal indenting force P having branches Hr (with respect to the semiaxis r) and Hz (with respect to the edge of the wedge) acts on
the punch, and also a shearing force T, in the direction of motion. By Coulomb’s law the relation T = �P is satisfied, where � is the coefficient
of friction. The condition for contact between the punch and the wedge has the form

(2.2)

where u�(r, �, z) is the normal displacement of the wedge when normal and shearing stresses act on its face, d is the indentation of the
punch, and � is the unknown contact area. When 	0 = 0 the punch moves parallel to the edge of the wedge; when 	 /= 0 the punch moves
away from the edge when � > 0 and approaches the edge when � < 0.

For known values of �, 	0, �, G, �, d and of the specified function f(r,z), it is required to determine the contact pressure ��(r, �, z) = −q(r,
z), (r, z) ∈ �, and also the contact area �. By finding q(r,z) and �, we can obtain the quantities P, Hr and Hz from the punch equilibrium
conditions

(2.3)

Using the solutions of the problems of the action of a shearing force parallel to the edge obtained above, the known solutions of the
problems of the action of a normal force and of a shearing force perpendicular to the edge,4–6,10 and also conditions (2.2), we can derive
the following integral equation for the function q(r,z)

(2.4)
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Here (Kn = Kn(x, y, r, z), n = 1, 2, 3, U(�, u) = ch
�c
u − 1)

(2.5)

For problem A in expression (2.5), we must take

(2.6)

The function �m(�) (m = 1, 2) in relations (2.6) satisfy a Fredholm integral equation of the second kind (0 ≤ � < ∞)

(2.7)

the functions �∗
m(�) (m = 1, 2) satisfy the Fredholm equations (0 ≤ � < ∞)

(2.8)

and the functions �∗
m (m = 1, 2) in (2.6) are found from Fredholm equations (1.4).

For Problems B (m = 3, k = 0) and C (m = k = 1), in formulae (2.5) we must put
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(2.9)

The functions �m(�) (m = 1,3) in relations (2.9) satisfy Fredholm equations (2.7), the functions �∗
m(�) (m = 1, 3) satisfy Eqs (2.8), and the

functions �∗
m(�) (m = 1.3) satisfy Eqs (1.4), in which we must choose the minus sign under the integral.

We have separated the principal terms, corresponding to the elastic half-space,2 in the kernels (2.5).
To solve integral equation (2.4) numerically with an unknown contact area, we will use the method of Hammerstein-type non-linear

boundary integral equations.4–6,10,14 We will introduce the following notation

(2.10)

and assume that the contact area as a whole is contained within the rectangle

(2.11)

which does not reach the edge of the wedge.
We will supplement Eq. (2.4) with the condition that the contact pressure in the contact area is non-negative, and also the conditions

for there to be no contact and for the pressure in the additional region S\W to vanish, writing them all in the form of the system

(2.12)

System (2.12) reduces to a single non-linear equation, to solve which we used the modified Newton’s method.
For a numerical analysis we chose an incompressible material (� = 0.5), when the kernel of (2.5) can be simplified considerably. Close

to the edge of the elastic quarter-space a considerable reduction in the contact area and contact pressures are observed for Problem A
compared with Problem B. When the punch moves parallel to the edge of the quarter-space the effect of friction on the pressure distribution
is negligible. When the punch approaches the edge of the quarter-space (� < 0) for Problem A the pressure and the contact area decrease
compared with the analogous case of withdrawal from the edge (� > 0). For problem B, on the other hand, it is more difficult for the punch to
penetrate when � < 0, than when � > 0. The least pressure in the case of Problem A occurs when 	0 = 
/2 and � < 0 (approach perpendicular
to the edge). Problem C for a wedge with an aperture angle � is equivalent to the symmetrical contact problem of the motion of two punches
on the faces of a wedge with an aperture angle 2�. When � = 
/3 in this problem the contact area and the pressure are greater when the
punches approach (� < 0), than in the case when they move away from the edge (� > 0). Here the greatest contact pressures occur when
	0 = 
/2 (Table 1).

Values of the dimensionless force P/(2
�b2) as a function of the indentation of the punch d/b, the coefficient of friction � and the
angle of motion 	0 (b/(2R1) = b/(2R2) = c/b = 1, a/b = 1.2), the aperture angle of the wedge is 
/3) are given in the table for Problems A, B and
C. The force increases as the indentation increases and depends considerably on the direction of the punch motion. It is easiest of all to
impress the punch in the case of Problem A when approaching the edge at a right angle. Unlike the contact problem for an incompressible
elastic half-space, where Coulomb friction has no effect on the contact pressure distribution2 (the displacement (1.12) vanishes), for an
incompressible wedge in the case when there is contact with the punch, as the analysis shows, we must take into account the contribution
of the friction forces to the value of the indenting force and the pressures in the contact area, close to the edge.
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Table 1

� 	0 d/b = 1 d/b = 1.5

A B C A B C

0.2 0 0.0922 0.586 0.283 0.152 1.33 0.514

/6 0.0969 0.557 0.275 0.160 1.24 0.497

/3 0.101 0.537 0.270 0.167 1.19 0.485

/2 0.102 0.530 0.268 0.169 1.17 0.481

/6 0.0841 0.655 0.302 0.139 1.54 0.554

−0.2 
/3 0.0851 0.645 0.299 0.140 1.51 0.548

/2 0.0880 0.618 0.292 0.145 1.43 0.533
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